SAW-Based Phononic Crystal Microfluidic Sensor—Microscale Realization of Velocimetry Approaches for Integrated Analytical Platform Applications
نویسندگان
چکیده
The current work demonstrates a novel surface acoustic wave (SAW) based phononic crystal sensor approach that allows the integration of a velocimetry-based sensor concept into single chip integrated solutions, such as Lab-on-a-Chip devices. The introduced sensor platform merges advantages of ultrasonic velocimetry analytic systems and a microacoustic sensor approach. It is based on the analysis of structural resonances in a periodic composite arrangement of microfluidic channels confined within a liquid analyte. Completed theoretical and experimental investigations show the ability to utilize periodic structure localized modes for the detection of volumetric properties of liquids and prove the efficacy of the proposed sensor concept.
منابع مشابه
Phononic crystal structures for acoustically driven microfluidic manipulations.
The development of microfluidic systems is often constrained both by difficulties associated with the chip interconnection to other instruments and by limitations imposed by the mechanisms that can enable fluid movement and processing. Surface acoustic wave (SAW) devices have shown promise in allowing samples to be manipulated, although designing complex fluid operations involves using multiple...
متن کاملTransparent Glass/SU8-Based Microfluidic Device with on-Channel Electrical Sensors
This paper presents a transparent microfluidic chip designed for continuous-flow photochemistry applications with integrated electrical sensing. The transparent chip design allows for microscale photochemistry, and permits direct, real-time visual/electrical observation. The microchip uses optically transparent indium tin oxide (ITO) electrodes for reagent and phase tracking. High-speed videogr...
متن کاملDevelopment of an integrated microfluidic platform for dynamic oxygen sensing and delivery in a flowing medium.
This paper describes a platform for real-time sensing of dissolved oxygen in a flowing microfluidic environment using an oxygen-sensitive luminescent dye (platinum octaethylporphyrin ketone) integrated into a micro-oxygenator device. Using a phase-based detection method, the luminescent decay lifetime of the dye was consistent with the linear Stern-Volmer relationship using both gaseous and aqu...
متن کاملBiosensors on Surface Acoustic Wave Phononic Band Gap Structures
page 156 Abstract: Already proven in a wide array of industrial applications, surface acoustic wave devices (SAWs) also have been demonstrated to hold substantial potential in the biosensor arena. Currently, SAW resonators coated with a biolayer can distinguish specific biomolecules in both liquid and vapor phases. By incorporating periodic perturbations in the design of SAW delay line, we were...
متن کاملTowards numerical prototyping of labs-on-chip: modeling for integrated microfluidic devices
This review article presents an overview of some of the tools, techniques and applications of numerical simulation for integrated microfluidic devices. Provided is a broad overview of the different areas to which numerical techniques have been applied in the development of these devices from detailed studies of fundamental microfluidic problems (e.g., species mixing and sample dispersion) to un...
متن کامل